
GraSP: Distributed Streaming 
Graph Partitioning

Casey Battaglino, Robert Pienta, Richard Vuduc 
Georgia Institute of Technology

KDD HPGM ‘15



Contributions

• Parallel implementation of re-streaming partitioning algorithm 

• GraSP interface is easily substituted for existing HPC 
partitioners such as ParMETIS 

• Performance evaluation on large graphs on a state-of-the-art 
machine, with very favorable comparison to existing methods



Motivation

load imbalance high edgecut



Motivation

load imbalance
1
2
3
4

1
2
3
4

unbalanced 

balanced

(time)

high edgecut



Motivation

load imbalance
1
2
3
4

commcomp

1
2
3
4

poor edgecut 

good edgecut

(time)

high edgecut



Motivation

Graph Partitioning

(spy plot)



Motivation

BFS/Shortest Path 
Connectivity 
PageRank 
Betweenness Centrality 
etc. etc. 

HPC: Solvers, SpMV



Motivation
HPC Graph Partitioners

METIS/ParMETIS

Scotch/PT-Scotch

PaToH

- Offline, generally divide-and-conquer (‘multilevel’) 
- Achieve excellent partitions for wide variety of graphs 
- Suitable for moderate-sized graphs, but heavy parallel overhead 
- Re-partitioning is slow

algorithmic alternatives: spectral, geometric, graph growing, random walk



Motivation
Streaming Graph Partitioners

- Stream over vertices in any order 
- Touch each vertex once 
- Simple to implement and very fast 
- Quality partitions for low-diameter/scale-free graphs 
- Suitable for re-partitioning / dynamic partitioning



Motivation
Streaming Graph Partitioners

Note: Struggle on higher diameter graphs

roadNet-CA8.mat



Methodology
Streaming Partitioning [SK2012, TKRV2012]

v



Methodology
Restreaming Partitioning [NU2013]

init random partition quality converges

temper parameters over time to favor balance



Methodology

1

2

3

4

GraSP: Parallel Restreaming



Methodology

1

2

3

4

Initialization



Methodology

1

2

3

4

Multiple Runs



Methodology

1

2

3

4

Stream



Methodology
Communicate

1

2

3

4

AllGatherStream Restream



Methodology

post: final partition computed



Evaluation

System
- Edison @ NERSC 
- 5576 Compute Nodes 
- Two 12-core “Ivy Bridge” processors per node 
- Cray Aries interconnect 
- MPI v3.0 
 



Evaluation
Real-World Data: SNAP Data Sets† 

Synthetic Data: R-MAT

†: https://snap.stanford.edu/data/ 

https://snap.stanford.edu/data/


Evaluation
Verification on real-world data sets



Evaluation
Verification on real-world data sets



Evaluation

Synthetic graphs: R-MAT



Evaluation

GraSP vs ParMETIS: Scale-22 R-MAT†

To save core-hours we didn’t run ParMETIS above Scale-22 
We generally encountered performance ~3 order of magnitude better.

†: 4194304 nodes, 67108864 edges



Evaluation

Weak Scaling



Evaluation

Strong Scaling



Evaluation

“Tempering”

Scale-28, 64 MPI Processes 



Evaluation

“Tempering”

Scale-28, 64 MPI Processes 



Conclusion
• Streaming partitioning is simple, scalable and 

effective (for the right kinds of graphs) 

• Streaming partitioning can operate orders of 
magnitude faster than sophisticated parallel 
partitioners with similar quality 

• Streaming partitioning deserves more attention 
from the HPC community


