
Jure Leskovec (@jure)
Including joint work with Y. Perez, R. Sosič, A. Banarjee,
M. Raison, R. Puttagunta , P. Shah

My research at Stanford:
Mining large social and information networks
We work with data from FaceBook, Yahoo,

Twitter, LinkedIn, Wikipedia, StackOverflow

Much research on graph processing
systems but we don’t find it too useful…

Why is that? What tools do we use?
What do we see are some big challenges?

2 8/20/2015 Jure Leskovec (@jure), Stanford University

3

Python Q&A Posts

Users

Questions

Answers
Select

Select
Python Join

Construct Graph

Scores

Hits Algorithm

Experts
Join

Provenance
script

8/20/2015 Jure Leskovec (@jure), Stanford University

4 8/20/2015 Jure Leskovec (@jure), Stanford University

Graphs are never given. They have
to be constructed from input data!

(graph constructions is a part of discovery process)

Examples:
 Facebook graphs: Friend, Communication,

Poke, Co-Tag, Co-location, Co-Event
 Cellphone/Email graphs: How many calls?
 Biology: P2P, Gene interaction networks

5 8/20/2015 Jure Leskovec (@jure), Stanford University

6

Relational tables Graphs and networks Big data storage

Hadoop
MapReduce

Graph construction
operations Graph analytics

8/20/2015 Jure Leskovec (@jure), Stanford University

We need a system that allows
for fast creation and processing

of big graphs!

Easy to use front-end
 Common high-level programming language

Fast execution times
 Interactive use (as opposed to batch use)

Ability to process large graphs
 Tens of billions of edges

Support for several data representations
 Transformations between tables and graphs

Large number of graph algorithms
 Straightforward to use

Workflow management and reproducibility
 Provenance

7 8/20/2015 Jure Leskovec (@jure), Stanford University

8

SNAP Network
Collection
71 graphs

Two observations:

(1) Most graphs are
not that large

(2) Big-memory
machines are here!
4x Intel CPU, 64 cores,
1TB RAM, $30K

Number of
Edges

Number of
Graphs

<0.1M 16

0.1M – 1M 25

1M – 10M 17

10M – 100M 7

100M – 1B 5

> 1B 1

8/20/2015 Jure Leskovec (@jure), Stanford University

Option 1 Option 2

Standard SQL database Custom representations

Separate systems for tables
and graphs

Integrated system for tables
and graphs

Single representation for
tables and graphs

Separate table and graph
representations

Distributed system Single machine system

Disk based structures In-memory structures

9 8/20/2015 Jure Leskovec (@jure), Stanford University

Option 1 Option 2

Standard SQL database Custom representations

Separate systems for tables
and graphs

Integrated system for tables
and graphs

Single representation for
tables and graphs

Separate table and graph
representations

Distributed system Single machine system

Disk based structures In-memory structures

10

Ringo
8/20/2015 Jure Leskovec (@jure), Stanford University

11

Unstructured
data

Relational
tables

(b) Specify
relationships

Network
representation

(a) Specify
entities

(c) Optimize
representation

(d) Perform
analytic
reasoning and
inference

Tabular
networks

Results

(e) Integrate
the results

Ringo

8/20/2015 Jure Leskovec (@jure), Stanford University

 Ringo (Python) code for executing
finding the StackOverflow example

12 8/20/2015 Jure Leskovec (@jure), Stanford University

13

Table
Objects

Graph
Containers

Graph
Methods

Graph, Table
Conversions

Filters

In-memory Graph Processing Engine

High-Level Language User Front-End
Provenance

Script
Interface with Graph
Processing Engine

Metadata
(Provenance)

Secondary Storage

8/20/2015 Jure Leskovec (@jure), Stanford University

 Input data must be manipulated and
transformed into graphs

14

Src Dst …

v1 v2 …

v2 v3 …

v3 v4 …

v1 v3 …

v1 v4 …

v1

v2
v3

v4

Table data
structure

Graph data
structure

8/20/2015 Jure Leskovec (@jure), Stanford University

 Four ways to create a graph:
 The data already contains edges as source

and destination pairs
 Nodes connected based on:
Pairwise node similarity
Temporal order of nodes
Grouping and aggregation of nodes

15 8/20/2015 Jure Leskovec (@jure), Stanford University

 Use case: In a forum, connect users
that post to similar topics:
 Distance metrics
 Euclidean, Haversine, Jaccard distance

 Connect similar nodes
 SimJoin, connect if closer than the threshold

Quadratic complexity
 Locality sensitive hashing

16 8/20/2015 Jure Leskovec (@jure), Stanford University

 Use case: In a Web log, connect pages
in a temporal order as clicked by the
users

 Connect a node with its successors
 Events selected per user, ordered by

timestamps
NextK, connect K successors

17 8/20/2015 Jure Leskovec (@jure), Stanford University

 Use case: In a Web log, measure the
activity level of different user groups
 Edge creation
 Partition users to groups
 Identify interactions within each group
 Compute a score for each group based on

interactions

 Treat groups as super-nodes in a graph

18 8/20/2015 Jure Leskovec (@jure), Stanford University

 Several graph types are supported
 Directed, Undirected, Multigraph

 >200 graph algorithms (by SNAP)

8/20/2015 Jure Leskovec (@jure), Stanford University 19

graphs networks

generation manipulation analytics

Containers

Methods

Requirements:
 Fast processing
 Efficient traversal of nodes and edges

 Dynamic structure
Quickly add/remove nodes and edges
 Create subgraphs, dynamic graphs, …

 How to achieve good balance?

20 8/20/2015 Jure Leskovec (@jure), Stanford University

23

1

3
6

4

Nodes
table Sorted vectors of in and out edges

2
3

8
5

Edges
table

7

9

7

1

8/20/2015 Jure Leskovec (@jure), Stanford University

 High-level front end
 Python module
 Based on Snap.py, uses SWIG for C++ interface

 High-performance graph engine
 C++ based on SNAP

 Multi-core support
OpenMP to parallelize loops
 Fast, concurrent hash table, vector operations

24 8/20/2015 Jure Leskovec (@jure), Stanford University

Dataset LiveJournal Twitter2010

Nodes 4.8M 42M

Edges 69M 1.5B

Text Size
(disk)

1.1GB 26.2GB

Graph Size
(RAM)

0.7GB 13.2GB

Table Size
(RAM)

1.1GB 23.5GB
25 8/20/2015 Jure Leskovec (@jure), Stanford University

Algorithm
Graph

PageRank
LiveJournal

PageRank
Twitter2010

Triangles
LiveJournal

Triangles
Twitter2010

Giraph 45.6s 439.3s N/A N/A

GraphX 56.0s - 67.6s -

GraphChi 54.0s 595.3s 66.5s -

PowerGraph 27.5s 251.7s 5.4s 706.8s

Ringo 2.6s 72.0s 13.7s 284.1s

8/20/2015 Jure Leskovec (@jure), Stanford University 26

Hardware: 4x Intel CPU, 64 cores, 1TB RAM, $35K

System Hosts CPUs
host Host Configuration Time

GraphChi 1 4 8x core AMD, 64GB RAM 158s

TurboGraph 1 1 6x core Intel, 12GB RAM 30s

Spark 50 2 97s

GraphX 16 1 8X core Intel, 68GB RAM 15s

PowerGraph 64 2 8x hyper Intel, 23GB RAM 3.6s

Ringo 1 4 20x hyper Intel, 1TB RAM 6.0s

8/20/2015 Jure Leskovec (@jure), Stanford University 27

Twitter2010, one iteration of PageRank

Algorithm Runtime

3-core 31.0s

Single source
shortest path 7.4s

Strongly connected
components 18.0s

28

 LiveJournal, 1 core

8/20/2015 Jure Leskovec (@jure), Stanford University

Dataset LiveJournal Twitter2010
Table to
graph

8.5s
13.0 MEdges/s

81.0s
18.0 MEdges/s

Graph to
table

1.5s
46.0 MEdges/s

29.2s
50.4 MEdges/s

29

Hardware: 4x Intel CPU, 80 cores, 1TB RAM, $35K

8/20/2015 Jure Leskovec (@jure), Stanford University

Dataset LiveJournal Twitter2010

Select <0.1s
575.0 MRows/s

1.6s
917.7 MRows/s

Join 0.6s
109.5 MRows/s

4.2s
348.8 MRows/s

Load graph 5.2s 76.6s

Save graph 3.5s 69.0s

30 8/20/2015 Jure Leskovec (@jure), Stanford University

 Big-memory machines are here:
 1TB RAM, 100 Cores ≈ a small cluster
 No overheads of distributed systems
 Easy to program

 Most “useful” datasets fit in memory

 Big-memory machines present a viable
solution for analysis of all-but-the-
largest networks

31 8/20/2015 Jure Leskovec (@jure), Stanford University

Ringo: Network science & exploration
 In-memory graph analytics
 Processing of tables and graphs
 Fast and scalable

32

Relational tables Graphs and networks

graph construction
operations

graph
analytics

8/20/2015 Jure Leskovec (@jure), Stanford University

33

Get your own
1TB RAM server!

And download RINGO/SNAP
http://snap.stanford.edu/snap


8/20/2015 Jure Leskovec (@jure), Stanford University

 Papers:
 Ringo: Interactive Graph Analytics on Big-

Memory Machines by Y. Perez, R Sosic, A.
Banerjee, R. Puttagunta, M. Raison, P.
Shah, J. Leskovec. SIGMOD 2015.

 Software:
 http://snap.stanford.edu/ringo/
 http://snap.stanford.edu/snappy
 https://github.com/snap-stanford/snap

8/20/2015 Jure Leskovec (@jure), Stanford University 34

http://cs.stanford.edu/people/jure/pubs/ringo-sigmod15.pdf
http://cs.stanford.edu/people/jure/pubs/ringo-sigmod15.pdf
http://snap.stanford.edu/snappy
http://snap.stanford.edu/snappy
https://github.com/snap-stanford/snap

35 8/20/2015 Jure Leskovec (@jure), Stanford University

	RINGO:�A System for Interactive Graph Analytics
	Background & Motivation
	Experts on StackOverflow
	Experts on StackOverflow
	Observation
	Graph Analytics Workflow
	Desiderata for Graph Analytics
	Machines and Graph Sizes
	Trade-offs
	Trade-offs
	Graph Analytics: Ringo
	Ringo!
	Ringo Overview
	Graph Construction
	Creating a Graph in Ringo
	Creating Graphs in Ringo
	Creating Graphs in Ringo
	Creating Graphs in Ringo
	Graphs & Methods
	Graph Representation
	Multigraph in Ringo
	Ringo Implementation
	Experiments: Datasets
	Benchmarks, One Computer
	Published Benchmarks
	Ringo: Sequential Algorithms
	Tables and Graphs
	Table Operations
	Conclusion
	Conclusion: Ringo
	Bottom line…
	References
	Slide Number 35

